|
I know you don't
believe me, so watch this:
Let's find the
inverse of A:
![A = [ row 1: 2 , -5 row 2: 3 , 4 ]](images/07-matrices-09.gif)
![[ row 1: 2 , -5 row 2: 3 , 4 | row 1: 1 , 0 row 2: 0 , 1 ]](images/07-matrices-10.gif)
STEP
1:
![-3 times Row 1 ... 2 times Row 2 ... [ row 1: -6 , 15 row 2: 6 , 8 | row 1: -3 , 0 row 2: 0 , 2 ]](images/07-matrices-11.gif)
|
Row 1 back
to normal
Row 1 +
Row 2 |
![[ row 1: 2 , -5 row 2: 0 , 23 | row 1: 1 , 0 row 2: -3 , 2 ]](images/07-matrices-12.gif) |
STEP
2:
![23 times Row 1 ... 5 times Row 2 ... [ row 1: 46 , -115 row 2: 0 , 115 | row 1: 23 , 0 row 2: -15 , 10 ]](images/07-matrices-13.gif)
|
Row 2 +
Row 1
Row 2 back
to normal |
![[ row 1: 46 , 0 row 2: 0 , 23 | row 1: 8 , 10 row 2: -3 , 2 ]](images/07-matrices-14.gif) |
STEP
3:
![( 1 / 46 ) times Row 1 ... ( 1 / 23 ) times Row 2 ... [ row 1: 1, 0 row 2: 0 , 1 | row 1: ( 4 / 23 ) , ( 5 / 23 ) row 2: -( 3 / 23 ) , ( 2 / 23 ) ]](images/07-matrices-15.gif)
![A^( -1 ) = [ row 1: ( 4 / 23 ) , ( 5 / 23 ) row 2: -( 3 / 23 ) , ( 2 / 23 ) ]](images/07-matrices-16.gif)
| I'll let you
check it (remember |
 |
). |
Continued on the
next
page
|
The printing
and distribution and/or downloading of these lessons is strictly
prohibited. |
|